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ABSTRACT 
A comparison of the accuracy of the central discretization scheme with artificial dissipation and the upwind 
flux-difference TVD scheme has been made for the compressible Navier-Stokes equations for high Reynolds 
number flows. 

First, a comparison is made on two one-dimensional model problems. Then the schemes are compared 
on flat plate boundary layer flow. It is shown that a central scheme basically has poor accuracy due to 
the isotropic nature of the artificial dissipation. An upwind scheme decomposes the flow into different 
components and adapts the dissipation to the velocity of the components. The associated ansitropic 
dissipation results in a good accuracy. It is further discussed how a central discretization scheme with 
artificial dissipation can be improved at the expense of the same complexity of an upwind scheme. 
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INTRODUCTION 

The central type finite volume discretization method using artificial dissipation, originated by 
Jameson et al.1, is nowadays a very popular method. Many researchers employ it in several 
variants. The method was originally developed for Euler equations and is still predominantly 
used for inviscid flow calculations. The artificial dissipation is a blend of a second order difference 
term and a fourth order difference term. The second order term is used to prevent oscillations 
at shock waves, while the fourth order term is meant for stability. The coefficients of both terms 
are determined by a pressure sensor. In the vicinity of a shock the fourth order term is switched 
off. In smooth regions of the flow the contribution of the second order term is negligible and 
essentially the fourth order term comes in to prevent the odd-even decoupling which would 
occur for a pure central scheme. 

In its basic version, the method is found to be very inaccurate for high Reynolds number 
viscous flows. Apparently, the artificial dissipation, although of fourth order near solid walls, 
interacts with the physical viscous terms. The role of the artificial dissipation was analysed by 
Allmares2. He showed that for a boundary layer flow the contribution of the artificial dissipation 
terms in the flux-balance of the x-momentum equation is comparable to the contribution of the 
physical viscous terms. Allmares undertook the same analysis for an upwind flux-difference TVD 
scheme and found an almost negligible false diffusion. In both analyses he took the central 
difference approximation of the inviscid fluxes as the true physical fluxes. 
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The deficiency of the central scheme with artificial dissipation is generally recognized. Most 
researchers using the method bring in means to reduce the artificial dissipation in the normal 
direction close to walls. Among the many existing examples, we cite here a method by Dawes3 

who puts the corresponding coefficient of the fourth order dissipation term equal to zero, a 
method by Arnone and Swanson4 who scale the coefficient by a function of the grid aspect ratio 
and a method by Kunz and Lakshminarayana5 who also scale the coefficient with grid aspect 
ratio and reduce it proportional to the square of the velocity. Near to walls, usually all artificial 
dissipation terms in the normal direction can be set equal to zero. Typical grids for practical 
calculations with Reynolds averaged Navier-Stokes equations in turbulent flows, like those used 
in the cited cases, have such a small mesh spacing in the direction normal to the wall so that 
the physical viscous terms are largely sufficient to prevent the odd-even decoupling. In a practical 
calculation the stretching of the grid in the direction normal to the wall is rather large. This has 
a consequence that, somewhat further away from the wall, the artificial dissipation terms become 
essential to guarantee the smoothness of the solution. This makes it very delicate to devise ad 
hoc means to steer the artificial dissipation. Allmares2 mentions several attempts with disappointing 
results. The present authors share the same experience. In the cited examples3,4,5, it is very 
difficult to judge on the accuracy. Calculated and experimental pressure plots compare well with 
each other. There is, however, no experimental information on skin friction. Even if there were, 
it would not be possible to evaluate the accuracy since results depend, critically, upon the 
turbulence model. To verify the accuracy, only laminar fiat plate boundary layer flow can be 
used, as in the paper by Allmares. 

Motivated by the observation that upwind TVD schemes seem to perform very well with 
respect to accuracy, Swanson and Turkel6 developed a modification of the basic central scheme 
with artificial dissipation to bring it closer to upwind schemes. They replaced the scalar dissipation 
terms by a matrix dissipation term. Their matrix dissipation can be seen as a simplified version 
of the difference between an upwind TVD discretization and a central discretization without 
artificial dissipation. The purpose of the matrix form of the numerical dissipation is to apply 
the appropriate scaling of the dissipation in each flow equation. Like the upwind method, their 
method uses limiters. One of their simplifications consists of employing only limiters based on 
pressure differences. If they would use limiters on the appropriate variables of each flow equation, 
their method would have the same complexity as the upwind TVD method. Swanson and Turkel 
compare results obtained by their matrix dissipation method to results obtained by the scalar 
dissipation method and the upwind TVD method. Their conclusion is that there is significant 
improvement in the accuracy of the matrix dissipation method over the accuracy of the scalar 
dissipation method, but that the accuracy of the upwind TVD method is not obtained. 

The aim of the present paper is, first, to give an explanation of the observed good accuracy 
obtainable with the upwind TVD method. The analysis is undertaken on one-dimensional model 
equations. Numerical illustrations are given for flow over a flat plate. The second objective is 
to explain why a central method with artificial dissipation can be used to obtain good accuracy 
when the artificial dissipation is properly scaled. Again, this is partly done by a one-dimensional 
model equation and by numerical illustrations for flow over a flat plate. Laminar flow over a 
flat plate is considered, but the Reynolds number is sufficiently high and the mesh spacing near 
the plate is sufficiently small, so that the test case is representative for practical applications. 

THE NUMERICAL METHODS 
The two-dimensional Navier-Stokes equations for unsteady compressible flow may be written 
in conservation form as, 

(1) 
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where 

and 

with 

where ρ is the fluid density; u, V velocity components in the x- and y-direction, respectively; p 
is pressure; T static temperature and E the total energy. Total enthalpy is defined by H = E + p/p. 
Fluid properties are: µ the viscosity; λ = µ the second viscosity coefficient and k the heat transfer 
coefficient. The equation of state is given by p = ρRT. 

By use of Gauss' divergence theorem, the governing equations can be written in integral form 
which are the basis of the finite volume spatial discretization. The equations are integrated in 
time by the standard four-stage simplified Runge-Kutta scheme. 

In the central scheme, a cell-vertex definition of inviscid and viscous fluxes is used, see Figure 1. 
The cells are chosen as control volumes. Fluxes are obtained by piecewise linear integration. 

For the viscous fluxes, derivatives of variables at the vertices are needed. These are again 
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determined by a cell-vertex approach. Mean values of derivatives are first calculated in the cells 
by the use of Gauss' theorem. A derivative at a vertex is defined by taking the mean over the 
neighbouring cells. To update the variables, a dual control volume around a vertex is employed. 
The flux balance for this control volume is defined by taking an average of the flux balances of 
the surrounding cells. The fourth order Jameson dissipation is constructed as per usual as a 
double pseudo-Laplacian. A pseudo-Laplacian is a 5-point difference molecule with value -4 
at the central node and + 1 at the other nodes. A double pseudo-Laplacian is the pseudo-Laplacian 
of the pseudo-Laplacian. Only the fourth order dissipation is used here since we only consider 
smooth flow fields. At boundaries, to define the Laplacian, exterior points are needed. The 
variables at the exterior points can be obtained by constant extrapolation, linear extrapolation 
or by mirroring. We illustrate these possibilities in the next paragraph. The exterior points do not 
need to have a precise geometrical location since the pseudo-Laplacian does not use distances. 

A vertex-centered scheme is used for the upwind formulation of the inviscid fluxes. Determination 
of derivatives and the viscous fluxes is treated in the same way as in the central scheme. The 
control volume for the convective fluxes is the dual control volume shown in Figure 1. The 
discretization of the convective terms is effected by the polynomial flux-difference splitting7. The 
second order flux is defined by the flux extrapolation technique involving a limiter. The minmod 
limiter is used. Full details on the inviscid flux definitions are given in Reference 8. The treatment 
of the viscous terms is explained in Reference 9. 

THE ONE-DIMENSIONAL MODEL PROBLEMS 
The mass and momentum-x equation for a constant density and constant pressure flow under 
boundary layer conditions are, 

Combining both equations, the momentum equation becomes, 

This is a convection-diffusion equation with a source term u(∂v/∂y) which is positive in flat plate 
boundary layer flow. A one-dimensional model equation that mimics this behaviour is, 

(2) 

for C, v and v constant and positive. This equation has the solution, 

The solution has boundary layer behaviour at y = 0. The constant C can be used to normalize 
the solution at u = 1 for y = L, giving, 
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The model equation (2) differs from the equation that is usually employed to study boundary 
layer behaviour: 

(3) 

This equation has the solution, 

This solution has boundary layer behaviour at y = L. The constant C can be used to normalize 
the solution at u = 1 for y = 0, giving the same expression as for problem (2). The model problem 
(3) is not physically correct in the sense that the velocity v is directed towards the wall. We use 
both (2) and (3) to illustrate the behaviour of central and upwind discretization schemes. 

In order to construct the solution, we use the time dependent form of the equations (2) and 
(3). For equation (2), this is, 

(4) 

A central discretization of (4), without artificial viscosity gives, 

where h is the constant mesh spacing and ∆ui the increment in time. The source term is averaged 
over the interval (i - , i + ) in order to obtain second order accuracy. With the mesh spacing 
Reynolds number Reh=vh/v, this equation is, 

(5) 

The central difference discretization of (3) is similarly obtained. In the sequel, we construct 
the solution of (5) through a four stage Runge-Kutta type time stepping like we use it for the 
full Navier-Stokes equations. The boundary conditions are uo = 0, uN = 1 for (2) and uo = 1, uN = 0 
for (3), where N is the number of discretization intervals. In the sequel, we always take N = 100. 

A central discretization with fourth order artificial dissipation has the form, 

+ ε(ui+2 - 4ui+1 + 6ui - 4ui-1 + ui-2) = 0 (6) 
By bringing the artificial dissipation term into the fluxbalance, an associated mesh spacing 
Reynolds number is formed as, 

Reε = 

In an actual Navier-Stokes calculation, the time step is obtained from a CFL-number based 
on a maximum transport velocity, i.e. the sum of a convective velocity and the speed of sound 
(c). So, the CFL number is approximately given by c ∆t/h. This CFL-number has the order of 
unity. So, the Reynolds number Reε has the order of v/εc. With ε ≈ 0.01 this number is of the 
order of 0.1 to 1 and is independent of mesh size. In the calculations to follow, we used Keε = 0.1 
and Reε = 1. The mesh spacing Reynolds number based on the physical viscosity can be much 
smaller, depending on mesh size. In the calculations we put Reh = 0.1. This is not an unfavourable 
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situation for the artificial dissipation. In an actual computation, the physical viscous terms can 
be less significant. This is illustrated later. 

A first order upwind discretization has the form, 

(7) 

A TVD-second order upwind discretization differs from the previous formula by replacement 
of the convective term by the non-linear combination, 

ui + Lim[ui - ui-1, ui+1-ui] - ui-1 - Lim[ui-1 - ui-2, ui - ui-1] 

where Lim is a limiter. We take here the MinMod limiter, i.e. the result is the argument with 
minimum modulus if both arguments have the same sign and is zero if the signs differ. 

RESULTS FOR THE MODEL PROBLEMS 
In Table 1, results are shown for the central discretization with artificial dissipation given by 
(6). In order to calculate the solution in the points 1 and N - 1, the boundary values in the 
points 0 and N are used. In the determination of the artificial viscosity term, a point outside 
the domain (0,L) is needed. This point can be defined in several ways. We used constant 
extrapolation (CTE) i.e. u-1 = uo, linear extrapolation (LNE), i.e. u-1 = 2uo - u1 or mirroring 
(MIR), i.e. u-1 = u1 - 2uo 3nd compared with the exact solution (EXA). Calculations were done 
both for Reε = 0.1 and Reε= 1. Linear extrapolation gives the best results and will therefore be 
used in the sequel. This is conform with the usual practice. 

Tables 2 and 3 show the results for the different schemes with Reε = 0.1: the central discretization 
without artificial dissipation (CEN), the central discretization with artificial dissipation (ART), 
the first order upwind discretization (UP1) and the second order TVD upwind discretization 
(TVD). For the TVD-scheme also, linear extrapolation at boundaries is used. 

For the model problem with source term, the TVD result is identical to the central result. In 
this case, the limiter chooses the central correction since the slope of the solution diminishes 
with the distance to the wall. The result is almost identical to the exact value. This model problem 
mimics best the physical boundary layer. For the model problem without source term, the TVD 
result differs slightly from the central result. The limiter chooses the second order upwind 
correction. So, for the physical boundary layer, the TVD-scheme generates very accurate results. 

Table 1 Different extrapolation strategies in the central discretization with artificial viscosity. Model 
problem with source term, Reh = 0.1 

No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

EXA 

0.0000 
0.0952 
0.1813 
0.2592 
0.3297 
0.3935 
0.4512 
0.5034 
0.5507 
0.5935 

CTE 

0.0000 
0.0876 
0.1739 
0.2526 
0.3238 
0.3882 
0.4465 
0.4992 
0.5469 
0.5901 

Reε = l 

LNE 

0.0000 
0.0945 
0.1807 
0.2587 
0.3294 
0.3933 
0.4511 
0.5034 
0.5507 
0.5935 

MIR 

0.0000 
0.0817 
0.1681 
0.2472 
0.3190 
0.3838 
0.4425 
0.4957 
0.5437 
0.5872 

CTE 

0.0000 
0.0604 
0.1372 
0.2149 
0.2882 
0.3555 
0.4169 
0.4725 
0.5229 
0.5685 

Reε = 0.1 

LNE 

0.0000 
0.0905 
0.1756 
0.2537 
0.3247 
0.3891 
0.4475 
0.5003 
0.5480 
0.5912 

MIR 

0.0000 
0.0453 
0.1180 
0.1955 
0.2699 
0.3387 
0.4015 
0.4586 
0.5103 
0.5571 
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Table 2 Comparison of different schemes for the model with source term, 
Reε = 0.1, Reh = 0.1 

No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

EXA 

0.0000 
0.0952 
0.1813 
0.2592 
0.3297 
0.3935 
0.4512 
0.5034 
0.5507 
0.5935 

CEN 

0.0000 
0.0952 
0.1814 
0.2594 
0.3299 
0.3937 
0.4515 
0.5037 
0.5510 
0.5938 

ART 

0.0000 
0.0905 
0.1756 
0.2537 
0.3247 
0.3891 
0.4475 
0.5003 
0.5480 
0.5912 

UP1 

0.0000 
0.0936 
0.1785 
0.2554 
0.3251 
0.3883 
0.4456 
0.4975 
0.5445 
0.5872 

TVD 

0.0000 
0.0952 
0.1814 
0.2594 
0.3299 
0.3937 
0.4515 
0.5037 
0.5510 
0.5938 

Table 3 Comparison of different schemes for the model without source 
term Reε = 0.1, Reh = 0.1 

No. 

91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

EXA 

0.5935 
0.5507 
0.5034 
0.4512 
0.3935 
0.3297 
0.2592 
0.1813 
0.0952 
0.0000 

CEN 

0.5938 
0.5510 
0.5037 
0.4515 
0.3937 
0.3299 
0.2594 
0.1814 
0.0952 
0.0000 

ART 

0.5928 
0.5495 
0.5016 
0.4485 
0.3899 
0.3252 
0.2538 
0.1754 
0.0903 
0.0000 

UP1 

0.5760 
0.5336 
0.4869 
0.4356 
0.3791 
0.3170 
0.2487 
0.1736 
0.0909 
0.0000 

TVD 

0.5920 
0.5493 
0.5021 
0.4499 
0.3923 
0.3287 
0.2583 
0.1806 
0.0948 
0.0000 

The results obtained with the central discretization without artificial viscosity are always the 
best for the model problems. The high quality of these results is mainly due to the low value of 
the mesh spacing Reynolds number (0.1). In an actual Navier-Stokes computation, the mesh 
spacing Reynolds number is only very small near the wall and can have very high values far 
away from the wall. For values higher than 2, as is well known, the central discretization result 
becomes oscillatory. The TVD-method guarantees non-oscillatory results in regions of high mesh 
spacing Reynolds number but, as shown here, also guarantees high accuracy results in regions 
of low mesh spacing Reynolds number, i.e. near the walls. 

In Tables 2 and 3 the results of the first order upwind method are given to show that the 
TVD modification of the upwind method is really necessary to obtain good accuracy. Further, 
it is clear that the artificial dissipation method can only reach the quality of the central method 
if the artificial dissipation is completely switched off. This means that the corresponding coefficient 
is to be steered in function of the obtained solution. The coefficient must be zero there where 
it is allowed by the mesh spacing and the associated Reynolds number of the physical viscous 
terms. The cited methods3,4,5 all try to achieve this. None of these methods, however, give an 
indication of the magnitude of the coefficient in the function of velocity. They all use essentially 
only geometrical information like distance to walls, orthogonality of the considered direction 
to the wall and cell aspect ratio. As already discussed, the matrix dissipation method of Swanson 
and Turkel has the potential to steer the coefficient of the artificial dissipation correctly. This would 
necessitate limiters based on velocity differences and would make the method completely 
equivalent to an upwind TVD method both in philosophy and complexity. 
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FLAT PLATE FLOW 
The set of equations (1) has been used to calculate flow over a flat plate. The free stream has 
a velocity U∞ = 30 m/s and zero pressure gradient, with a Reynolds number of 2·l06/m. The 
problem has been solved both by the central method with artificial dissipation and by the TVD 
second order upwind scheme, on a 101 x 61 grid with approximately 30 points in the boundary 
layer. Figure 2 shows a close-up of the grid near the wall. The mesh spacing in the longitudinal 
direction is constant. The length of the domain is 1 m and the mesh length is 0.01 m. In the 
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transversal direction, the stretching factor is equal to 1.05. The mesh height of the first cell is 
5 x 10 - 5 m. This results in an aspect ratio at the wall of 200. The height of the calculation domain 
is 0.017679 m. 

At the inlet boundary, velocity components are prescribed according to the Blasius profile, a 
corresponding total temperature profile is given, whereas pressure is extrapolated from the 
interior. The leading edge of the plate lies at 0.2 m upstream of the inlet. The total temperature 
profile is calculated with a recovery factor of 0.84. So we use here classical boundary layer 
results10. At the outflow boundaries, i.e. the upper and right boundaries, pressure is imposed. 
At the flat plate zero velocity and zero heat flux are imposed. 
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Figure 3 shows the skin friction coefficient in function of Rex for the central scheme with linear 
extrapolation to determine the artificial dissipation. The artificial viscosity coefficient necessary 
to obtain stability was ε = 0.04. The dotted line represents the Blasius solution. The u-profile is 
compared with the exact Blasius profile in Figure 4 for Rex = 2·106. The global correspondance 
is very good, but near the wall a difference between exact (dotted line) and calculated profiles 
is present which lays at the origin of the bad Cƒ-distribution in Figure 3. To be complete, 
Figure 5 gives the v-profile which has also a deviation near the wall. The ε value to reach a 
monotone solution is rather high. This is due to the large mesh spacing Reynolds number in 
x-direction. The maximum value of the Reynolds number is u∆x/v = 20,000. This makes it again 
clear that an anisotropic form of artificial dissipation is necessary. The mesh spacing Reynolds 
number in y-direction at the middle of the plate (Rex = 1.5·106) and at the tenth grid point away 
from the wall is v ∆y/v = 0.4. Close to the wall, this Reynolds number approaches zero. 
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When the magnitude of the dissipation is lowered in regions where viscous contributions are 
significant, a better solution is obtained. To illustrate this, the dissipation term was premultiplied 
by the factor, 

where τxy is the local stress in a point and τxymax is the maximum stress all over the field. Both 
Cf and velocity profile are closer to the analytical solution as shown in Figures 6, 7 and 8. 

Results of the upwind TVD-scheme are shown in Figure 9. One clearly sees the excellent 
performance of a correctly scaled matrix dissipation. Also the velocity profiles are well represented 
and are almost identical to the correct profiles shown in Figures 7 and 8. 

The flat plate results show that the central discretization scheme with standard artificial 
dissipation terms is very inaccurate. The accuracy can be much improved by lowering the artificial 
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dissipation in regions where the physical viscosity terms are sufficient to guarantee stability. For 
the flat plate flow this is rather easy to implement. This is certainly not so evident for more 
complex flow problems. The TVD-methodology can be seen as an automatic means to adjust 
the artificial dissipation to the minimum necessary for stability. 

CONCLUSIONS 
It was shown that a central scheme with artificial dissipation basically results in poor accuracy 
due to excessive artificial dissipation in viscosity dominated regions of the flow field. It is necessary 
to steer the artificial dissipation in function of the local flow field. This is automatically realized 
in an upwind flux-difference TVD method resulting in very good accuracy. 
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